Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Sci Rep ; 14(1): 7822, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570613

RESUMO

SARS CoV-2, the causative agent for the ongoing COVID-19 pandemic, it enters the host cell by activating the ACE2 receptor with the help of two proteasesi.e., Furin and TMPRSS2. Therefore, variations in these genes may account for differential susceptibility and severity between populations. Previous studies have shown that the role of ACE2 and TMPRSS2 gene variants in understanding COVID-19 susceptibility among Indian populations. Nevertheless, a knowledge gap exists concerning the COVID-19 susceptibility of Furin gene variants among diverse South Asian ethnic groups. Investigating the role of Furin gene variants and their global phylogeographic structure is essential to comprehensively understanding COVID-19 susceptibility in these populations. We have used 450 samples from diverse Indian states and performed linear regression to analyse the Furin gene variant's with COVID-19 Case Fatality Rate (CFR) that could be epidemiologically associated with disease severity outcomes. Associated genetic variants were further evaluated for their expression and regulatory potential through various Insilco analyses. Additionally, we examined the Furin gene using next-generation sequencing (NGS) data from 393 diverse global samples, with a particular emphasis on South Asia, to investigate its Phylogeographic structure among diverse world populations. We found a significant positive association for the SNP rs1981458 with COVID-19 CFR (p < 0.05) among diverse Indian populations at different timelines of the first and second waves. Further, QTL and other regulatory analyses showed various significant associations for positive regulatory roles of rs1981458 and Furin gene, mainly in Immune cells and virus infection process, highlighting their role in host immunity and viral assembly and processing. The Furin protein-protein interaction suggested that COVID-19 may contribute to Pulmonary arterial hypertension via a typical inflammation mechanism. The phylogeographic architecture of the Furin gene demonstrated a closer genetic affinity of South Asia with West Eurasian populations. Therefore, it is worth proposing that for the Furin gene, the COVID-19 susceptibility of South Asians will be more similar to the West Eurasian population. Our previous studies on the ACE2 and TMPRSS2 genes showed genetic affinity of South Asian with East Eurasians and West Eurasians, respectively. Therefore, with the collective information from these three important genes (ACE2, TMPRSS2 and Furin) we modelled COVID-19 susceptibilityof South Asia in between these two major ancestries with an inclination towards West Eurasia. In conclusion, this study, for the first time, concluded the role of rs1981458 in COVID-19 severity among the Indian population and outlined its regulatory potential.This study also highlights that the genetic structure for COVID-19 susceptibilityof South Asia is distinct, however, inclined to the West Eurasian population. We believe this insight may be utilised as a genetic biomarker to identify vulnerable populations, which might be directly relevant for developing policies and allocating resources more effectively during an epidemic.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/epidemiologia , COVID-19/genética , Furina/genética , Pandemias , Polimorfismo Genético
3.
J Family Med Prim Care ; 13(1): 208-220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38482315

RESUMO

Background: H/ACA small nucleolar ribonucleoproteins (snoRNP) form a complex with multiple proteins to accomplish the pseudouridylation of rRNA. The assembly of H/ACA small nucleolar ribonucleoproteins (snoRNP) is initiated by H/ACA ribonucleoprotein Assembly factor, that is, SHQ1. Mutations in SHQ1 have been reported to cause two disorders namely, dystonia-35 childhood onset (OMIM*619921) and neurodevelopmental disorder with seizures and dystonia (OMIM*619922), both of which are inherited in an autosomal recessive manner. Considering the high genetic and clinical diversity of SHQ1-related clinical features and the importance of SHQ1 in the assembly of the H/ACA snoRNP complex, it is important to take a systematic approach to delineate the genetic diagnosis and impact of mutations on protein structure and stability. Methods: Whole exome sequencing followed by Sanger validation was performed in an individual with the clinical features of neurodevelopmental disorder with seizures and dystonia (OMIM*619922). Protein modeling studies of all the reported SHQ1 variants to date were performed using freely available web servers Interactive Tree of Life, String, BioGrid, ShinyGO, DAVID, and Pathvix. Protein structures were visualized using Pymol. Results and Discussion: We identified compound heterozygous variants, one known frameshift deletion c. 828_831del, p.(Asp277Serfs*27) and the other novel missense variant c. 1157A>C, p.(Tyr386Ser) found in an individual with neurodevelopmental disorder, seizures, movement disorder, and hypomyelination leukodystrophy on neuroimaging. Protein-interactome studies identified potential genetic interactors that include GAR1, NAF1, TRUB1, UTP15, DKC1, NOP10, NPHOSPH 10, KRR1, NOP58, NOP56, FBL, RRP9, NHP2, RUVBL1, and RUVBL2. Ribosome biogenesis in eukaryotes, RNA polymerase, RNA transport, spliceosome, ribosome, cytosolic DNA-sensing pathway, DNA replication, mismatch repair, base excision repair, nucleotide excision repair, and basal transcription factors process were identified as the linked pathways with the prioritized genes. Conclusion: In conclusion, a sophisticated genotype and phenotype correlation followed by linking the genes to the key biological pathways opens new avenues to understand disease pathology and plan for therapeutic interventions.

4.
Nat Commun ; 15(1): 1640, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388531

RESUMO

THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.


Assuntos
Deficiência Intelectual , RNA , Estilbenos , Ácidos Sulfônicos , Humanos , Animais , Camundongos , RNA/metabolismo , Deficiência Intelectual/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA , Transporte de RNA , Mamíferos/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Res Sq ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37720017

RESUMO

THOC6 is the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 facilitates the formation of the Transcription Export complex (TREX) tetramer, composed of four THO monomers. The TREX tetramer supports mammalian mRNA processing that is distinct from yeast TREX dimer functions. Human and mouse TIDS model systems allow novel THOC6-dependent TREX tetramer functions to be investigated. Biallelic loss-of-functon(LOF) THOC6 variants do not influence the expression and localization of TREX members in human cells, but our data suggests reduced binding affinity of ALYREF. Impairment of TREX nuclear export functions were not detected in cells with biallelic THOC6 LOF. Instead, mRNA mis-splicing was observed in human and mouse neural tissue, revealing novel insights into THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for regulation of key signaling pathways in human corticogenesis that dictate the transition from proliferative to neurogenic divisions that may inform TIDS neuropathology.

6.
Cureus ; 15(6): e40366, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37456470

RESUMO

Background Aicardi-Goutieres syndrome (AGS) is a genetic disorder that has variable manifestations including neurological, immunological, and sometimes other system involvement in various combinations. Considering the high genetic and clinical diversity of AGS and the importance of RNASEH2 complex in the biological system, it is important to take a systematic approach to delineate the genetic diagnosis and impact of missense mutations. Methods Clinical targeted gene sequencing followed by Sanger validation was performed in an individual with the clinical features of AGS. Protein modeling studies of all the reported RNASEH2A missense variants till date were performed using freely available web servers BioGrid, ShinyGO. Protein structures were visualized using Pymol. Results and discussion We identified a novel homozygous splice site donor variant c.549+1G>T in RNASEH2A. Furthermore protein-interactome studies identifiedpotential genetic interactors that include RNASEH2A, RNASEH2B, TYMS, RNASEH2C, RPA1, ORC3, ORC2, CDC6, PCNA, LIG1, PRIM1, RFC2, DUT, GINS1, MCM7, FEN1, MCM4, GINS2, CDK4, and MCM5. Identified genes were mapped to specific pathways using SHINY GO. DNA replication and cell cycle, centrosome cycle, post-replication repair, nucleic acid and metabolic process, cellular response to stress, DNA metabolic process, nucleic acid phosphodiester bond hydrolysis, RNA phosphodiester bond hydrolysis, and DNA biosynthetic process were identified as the linked pathways with the prioritized genes. Conclusion In conclusion, a sophisticated genotype and phenotype correlation followed by linking the genes to the key biological pathways opens new avenues to understand disease pathology and plan for therapeutic interventions.

7.
Am J Med Genet A ; 191(9): 2446-2450, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37337918

RESUMO

Combined oxidative phosphorylation deficiency type 53 (COXPD53) is an autosomal recessive neurodevelopmental disorder (NDD) caused by homozygous variants in the gene C2orf69. Here, we report a novel frameshift variant c.187_191dupGCCGA, p.D64Efs*56 identified in an individual with clinical presentation of COXPD53 with developmental regression and autistic features. The variant c.187_191dupGCCGA, p.D64Efs*56 represents the most N-terminal part of C2orf69. Notable clinical features of COXPD53of the proband include developmental delay, developmental regression, seizures, microcephaly, and hypertonia. Structural brain defects of cerebral atrophy, cerebellar atrophy, hypomyelination, and thin corpus callosum were also observed. While we observe strong phenotypic overlap among affected individuals with C2orf69 variants, developmental regression and autistic features have not been previously described in individuals with COXPD53. Together, this case expands the genetic and clinical phenotypic spectrum of C2orf69-associated COXPD53.


Assuntos
Transtorno Autístico , Microcefalia , Malformações do Sistema Nervoso , Humanos , Microcefalia/genética , Transtorno Autístico/complicações , Transtorno Autístico/genética , Convulsões/genética , Hipertonia Muscular , Atrofia
8.
Sci Rep ; 13(1): 5630, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024661

RESUMO

An atomistic technique to successfully demonstrate the ultrafast carrier dynamics in Ge photoconductive samples is reported here. The technique is validated against the experimental findings and with the Drude conductivities. The impact of the various different scattering mechanisms is used to calibrate the experimental results. It is observed that the total scattering rate is not a constant parameter as contrast to Drude model which uses constant scattering rate as the fitting parameter to demonstrate the ultrafast carrier dynamics, but strongly dependent on the applied peak THz field strength. It also contradicts with the relaxation time approximation (RTA) method which uses scattering rate chosen on the empirical basis as the fitting parameter to demonstrate the ultrafast carrier dynamics. On the other hand the limitations and challenges offered by various types of density functional theories (DFT) pose lot of challenges. In current manuscript various types of scattering mechanisms i.e. acoustic, intervalley, Coulomb and impact ionization on the behavior of carrier conductivity are studied in details. The proposed technique has shown capability to extract low and high frequency conductivities accurately which is impossible through the Drude model or DFT based theories. It is observed that the free carrier absorption coefficient depends on the refractive index of the material at low THz frequencies. The solution of Boltzmann transport equation through Monte Carlo technique provides valuable insights for better understanding of ultrafast carrier transportation mechanism. The free carrier absorption spectra are found to be in good agreement with the experimental results at various THz field strengths.

9.
Immunogenetics ; 75(3): 321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36820894
10.
Immunogenetics ; 75(3): 309-320, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36534127

RESUMO

The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Imunogenética , Antígenos de Histocompatibilidade Classe I/genética
11.
Front Genet ; 13: 966595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568370

RESUMO

The ongoing COVID-19 pandemic has been a scientific, medical and social challenge. Since clinical course of this disease is largely unpredictable and can develop rapidly causing severe complications, it is important to identify laboratory biomarkers, which may help to classify patient's severity during initial stage. Previous studies have suggested C-reactive protein (inflammatory) and D-dimer (biochemical) as an effective biomarker. The differential severity in patients across the world and our limited understanding in the progression of the disease calls for a multi-country analysis for biomarkers. Therefore, we have analyzed these biomarkers among 228 Bangladeshi COVID-19 patients. We observed significant association of COVID-19 severity with these two biomarkers. Thus, we suggest to use these biomarkers for Bangladeshi COVID-19 patients for better disease monitoring. Such validated preventive measures may decrease the case fatality ratio substantially.

12.
Infect Genet Evol ; 98: 105206, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995811

RESUMO

SARS-CoV-2, the causative agent for COVID-19, an ongoing pandemic, engages the ACE2 receptor to enter the host cell through S protein priming by a serine protease, TMPRSS2. Variation in the TMPRSS2 gene may account for the disparity in disease susceptibility between populations. Therefore, in the present study, we have used next-generation sequencing (NGS) data of world populations from 393 individuals and analyzed the TMPRSS2 gene using a haplotype-based approach with a major focus on South Asia to study its phylogenetic structure and their haplotype sharing among various populations worldwide. Our analysis of phylogenetic relatedness showed a closer affinity of South Asians with the West Eurasian populations therefore, host disease susceptibility and severity particularly in the context of TMPRSS2 will be more akin to West Eurasian instead of East Eurasian. This is in contrast to our prior study on the ACE2 gene which shows South Asian haplotypes have a strong affinity towards West Eurasians. Thus ACE2 and TMPRSS2 have an antagonistic genetic relatedness among South Asians. Considering the significance of the TMPRSS2 gene in the SARS-CoV-2 pathogenicity, COVID-19 infection and intensity trends could be directly associated with increased expression therefore, we have also tested the SNPs frequencies of this gene among various Indian state populations with respect to the case fatality rate (CFR). Interestingly, we found a significant positive association between the rs2070788 SNP (G Allele) and the CFR among Indian populations. Further our cis eQTL analysis of rs2070788 shows that the GG genotype of the rs2070788 tends to have a significantly higher expression of TMPRSS2 gene in the lung compared to the AG and AA genotypes thus validating the previous observation and therefore it might play a vital part in determining differential disease vulnerability. We trust that this information will be useful in understanding the role of the TMPRSS2 variant in COVID-19 susceptibility and using it as a biomarker may help to predict populations at risk.


Assuntos
COVID-19/genética , COVID-19/mortalidade , Predisposição Genética para Doença , Polimorfismo Genético , SARS-CoV-2/genética , Serina Endopeptidases/genética , População Branca/genética , Humanos , Índia/epidemiologia , Desequilíbrio de Ligação , Pandemias , Filogenia
14.
Sci Rep ; 11(1): 12346, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117310

RESUMO

With the growing evidence on the variable human susceptibility against COVID-19, it is evident that some genetic loci modulate the severity of the infection. Recent studies have identified several loci associated with greater severity. More recently, a study has identified a 50 kb genomic segment introgressed from Neanderthal adding a risk for COVID-19, and this genomic segment is present among 16% and 50% people of European and South Asian descent, respectively. Our studies on ACE2 identified a haplotype present among 20% and 60% of European and South Asian populations, respectively, which appears to be responsible for the low case fatality rate among South Asian populations. This result was also consistent with the real-time infection rate and case fatality rate among various states of India. We readdressed this issue using both of the contrasting datasets and compared them with the real-time infection rates and case fatality rate in India. We found that the polymorphism present in the 50 kb introgressed genomic segment (rs10490770) did not show any significant correlation with the infection and case fatality rate in India.


Assuntos
Povo Asiático/genética , COVID-19/patologia , Enzima de Conversão de Angiotensina 2/genética , COVID-19/virologia , Frequência do Gene , Loci Gênicos , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , SARS-CoV-2/isolamento & purificação
15.
Front Genet ; 11: 564741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101387

RESUMO

Studies on host-pathogen interaction have identified human ACE2 as a host cell receptor responsible for mediating infection by coronavirus (COVID-19). Subsequent studies have shown striking difference of allele frequency among Europeans and Asians for a polymorphism rs2285666, present in ACE2. It has been revealed that the alternate allele (TT-plus strand or AA-minus strand) of rs2285666 elevate the expression level of this gene upto 50%, hence may play a significant role in SARS-CoV-2 susceptibility. Therefore, we have first looked the phylogenetic structure of rs2285666 derived haplotypes in worldwide populations and compared the spatial frequency of this particular allele with respect to the COVID-19 infection as well as case-fatality rate in India. For the first time, we ascertained a significant positive correlation for alternate allele (T or A) of rs2285666, with the lower infection as well as case-fatality rate among Indian populations. We trust that this information will be useful to understand the role of ACE2 in COVID-19 susceptibility.

16.
Sci Rep ; 10(1): 18706, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127982

RESUMO

An optimized empirical pseudopotential method (EPM) in conjunction with virtual crystal approximation (VCA) and the compositional disorder effect is used for simulation to extract the electronic material parameters of wurtzite nitride alloys to ensure excellent agreement with the experiments. The proposed direct bandgap results of group-III nitride alloys are also compared with the different density functional theories (DFT) based theoretical results. The model developed in current work, significantly improves the accuracy of calculated band gaps as compared to the ab-initio method based results. The physics of carrier transport in binary and ternary nitride materials is investigated with the help of in-house developed Monte Carlo algorithms for solution of Boltzmann transport equation (BTE) including nonlinear scattering mechanisms. Carrier-carrier scattering mechanisms defined through Coulomb-, piezoelectric-, ionized impurity-, surface roughness-scattering with acoustic and intervalley scatterings, all have been given due consideration in present model. The direct and indirect energy bandgap results have been calibrated with the experimental data and use of symmetric and asymmetric form factors associated with respective materials. The electron mobility results of each binary nitride material have been compared and contrasted with experimental results under appropriate conditions and good agreement has been found between simulated and experimental results.

17.
PLoS One ; 15(9): e0238255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936832

RESUMO

It was shown that the human Angiotensin-converting enzyme 2 (ACE2) is the receptor of recent coronavirus SARS-CoV-2, and variation in this gene may affect the susceptibility of a population. Therefore, we have analysed the sequence data of ACE2 among 393 samples worldwide, focusing on South Asia. Genetically, South Asians are more related to West Eurasian populations rather than to East Eurasians. In the present analyses of ACE2, we observed that the majority of South Asian haplotypes are closer to East Eurasians rather than to West Eurasians. The phylogenetic analysis suggested that the South Asian haplotypes shared with East Eurasians involved two unique event polymorphisms (rs4646120 and rs2285666). In contrast with the European/American populations, both of the SNPs have largely similar frequencies for East Eurasians and South Asians, Therefore, it is likely that among the South Asians, host susceptibility to the novel coronavirus SARS-CoV-2 will be more similar to that of East Eurasians rather than to that of Europeans.


Assuntos
Povo Asiático/genética , Infecções por Coronavirus/genética , Peptidil Dipeptidase A/genética , Pneumonia Viral/genética , Polimorfismo de Nucleotídeo Único , Receptores Virais/genética , Enzima de Conversão de Angiotensina 2 , Ásia/epidemiologia , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/etnologia , Haplótipos/genética , Migração Humana , Humanos , Desequilíbrio de Ligação , Pandemias , Filogenia , Pneumonia Viral/etnologia , SARS-CoV-2 , População Branca/genética
18.
Sci Rep ; 10(1): 5593, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221319

RESUMO

Both classical and recent genetic studies have unanimously concluded that the genetic landscape of South Asia is unique. At long distances the 'isolation-by-distance' model appears to correspond well with the genetic data, whereas at short distances several other factors, including the caste, have been shown to be strong determinant factors. In addition with these, tribal populations speaking various languages add yet another layer of genetic complexity. The Kol are the third most populous tribal population in India, comprising communities speaking Austroasiatic languages of the Northern Munda branch. Yet, the Kol have not hitherto undergone in-depth genetic analysis. In the present study, we have analysed two Kol groups of central and western India for hundreds thousands of autosomal and several mitochondrial DNA makers to infer their fine genetic structure and affinities to other Eurasian populations. In contrast, with their known linguistic affinity, the Kol share their more recent common ancestry with the Indo-European and Dravidian speaking populations. The geographic-genetic neighbour tests at both the temporal and spatial levels have suggested some degree of excess allele sharing of Kol1 with Kol2, thereby indicating their common stock. Our extensive analysis on the Kol ethnic group shows South Asia to be a living genetics lab, where real-time tests can be performed on existing hypotheses.


Assuntos
Povo Asiático/genética , Etnicidade/genética , Linguística , Alelos , Povo Asiático/estatística & dados numéricos , DNA Mitocondrial/genética , Etnicidade/psicologia , Etnicidade/estatística & dados numéricos , Feminino , Fluxo Gênico/genética , Frequência do Gene/genética , Marcadores Genéticos/genética , Humanos , Índia , Idioma , Linguística/métodos , Masculino
19.
Nanotechnology ; 31(15): 155201, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31860875

RESUMO

The optical and structural properties of CuO film deposited on n-Si via spin-coating method have been ascertained for diverse annealing times. The characterizations were made using x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-vis spectroscopy, ellipsometry spectroscopy and photoluminescence. A detailed analysis revealed the favorable behavior of CuO film for visible photonics resonators such as Fabry-Perot (FP) and ring resonators. The best suitable property was obtained for a film annealed for 15 min. Accordingly, the CuO-film-coated resonators were simulated and analyzed theoretically using the MODE Solutions tool by Lumerical and MATLAB. In the FP resonator, the transmission intensity, contrast factor and finesse were computed for different annealing times and angles of light incidence. Further, for the CuO ring resonator, an eigenmode solver was incorporated (in the wavelength range 300-900 nm) to compute the effective refractive index, propagation constant, group velocity, losses, dispersion and transmission intensity. Additionally, utilizing the basic expressions, the free spectral range, full-width at half-maximum and quality factor were derived.

20.
J Biosci ; 44(3)2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31389361

RESUMO

The South Asian populations have a mosaic of ancestries likely due to the interactions of long-term populations of the landmass and those of East andWest Eurasia. Apart from prehistoric dispersals, there are some known population movements to India. In this study,we focussed on the migration of Jewish and Parsi populations on temporal and spatial scales. The existence of Jewish and Parsi communities in India are recorded since ancient times. However, due to the lack of high-resolution genetic data, their origin and affiliation with other Indian and non-Indian populations remains shrouded in legends. Earlier genetic studies on populations of Indian Jews have found evidence for a minor shared ancestry of Indian Jews with Middle Eastern (Jews) populations, whereas for Parsis, the Iranian link was proposed. Recently, in our high-resolution study, we were able to quantify the admixture dynamics of these groups, which has suggested a male-biased admixture. Here, we added the newly available ancient samples and revisited the interplay of genes and cultures. Thus, in this study we reconstructed a broad genetic profile of Indian Jews and Parsis to paint a fine-grained picture of these ethnic groups.


Assuntos
Povo Asiático/história , DNA Antigo/análise , Genética Populacional , Migração Humana/tendências , Judeus/história , População Branca/história , Aculturação , Antropologia/métodos , Etnicidade , Feminino , Variação Genética , História Antiga , Humanos , Índia/etnologia , Irã (Geográfico)/etnologia , Judeus/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA